On a Characterisation of Inner Product Spaces

نویسنده

  • G. CHELIDZE
چکیده

It is well known that for the Hilbert space H the minimum value of the functional Fμ(f) = ∫ H ‖f−g‖2dμ(g), f ∈ H, is achived at the mean of μ for any probability measure μ with strong second moment on H. We show that the validity of this property for measures on a normed space having support at three points with norm 1 and arbitrarily fixed positive weights implies the existence of an inner product that generates the norm. 2000 Mathematics Subject Classification: 46C15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Fuzzy Inner Product Spaces

In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.

متن کامل

$C^{*}$-semi-inner product spaces

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

متن کامل

NORM AND INNER PRODUCT ON FUZZY LINEAR SPACES OVER FUZZY FIELDS

In this paper, we introduce the concepts of norm and inner prod- uct on fuzzy linear spaces over fuzzy elds and discuss some fundamental properties.

متن کامل

Atomic Systems in 2-inner Product Spaces

In this paper, we introduce the concept of family of local atoms in a 2-inner product space and then this concept is generalized to an atomic system. Besides, a characterization of an atomic system lead to obtain a new frame. Actually this frame is a generalization of previous works.

متن کامل

Frames in 2-inner Product Spaces

In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames.

متن کامل

Fuzzy Inner Product and Fuzzy Norm \of Hyperspaces

We introduce and  study  fuzzy (co-)inner product and fuzzy(co-)norm of hyperspaces. In this regard by considering  the notionof hyperspaces, as a generalization of vector spaces, first we willintroduce the notion of fuzzy (co-)inner product in hyperspaces and will apply it to formulate the notions offuzzy (co-)norm and fuzzy (co-)orthogonality  in hyperspaces. Inparticular, we will prove that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003